今天主要講一下3D打印技術(shù)和文化創(chuàng)意產(chǎn)業(yè)的關(guān)系
勞倫斯利弗莫爾國家實驗室(LLNL),SLAC國家加速器實驗室(SLAC)和艾姆斯實驗室的科學(xué)家正在研究X射線成像,以檢查激光粉末床融合過程中的金屬部件。該研究論文是實驗室之間合作的一部分,旨在確定金屬3D打印部件缺陷的原因,并了解如何減輕這些缺陷。
據(jù)魔猴網(wǎng)了解,全球醫(yī)療器械公司LimaCorporate(利馬)已經(jīng)確認,它已經(jīng)開始在紐約的特殊外科醫(yī)院(HSS)建設(shè)其即將推出的現(xiàn)場3D打印設(shè)施。今年1月首次確認,合作伙伴于5月底在現(xiàn)場舉行了奠基儀式。建筑工程計劃于2020年完工,預(yù)計該中心本身將于同年初投入運營。
3d打印越來越火熱,提到光固化3D打印可能大部分只知道sla的成型方式,也會覺得這種打印機應(yīng)該是上萬元的,光固化一聽名字固然就會想到是光照射后固化成型的意思。光固化大部分使用的耗材都是光敏樹脂,光敏樹脂是由光引發(fā)劑,單體聚合物與預(yù)聚體組成的混合物,這種材料可在特定波長紫外光聚焦下完成固化。
近期魔猴網(wǎng)了解到,加利福尼亞航空航天零件制造商Parker Aerospace宣布將為Vericor Power System的油田燃氣輪機3D打印燃油霧化噴嘴和雙燃料歧管組件。電子束技術(shù)將用于生產(chǎn)新組件,實現(xiàn)減少排放和零件數(shù)量,同時提高制造可預(yù)測性。
散熱性能限制了便攜式計算機、電力電子設(shè)備和大功率 LED 照明的小型化。來自實驗室的高端技術(shù)解決方案通常不能滿足消費產(chǎn)品的大規(guī)模生產(chǎn)和部署。采用熱管理解決方案,比如工業(yè) 3D 打?。ㄋ^的增材制造)可以彌補差距,在可用空間嚴重受限的情況下也能保持有損電子設(shè)備的冷卻。由于設(shè)計自由,3D 打印熱管理組件提供與傳統(tǒng)制造組件相同或更高的效率,但需要的空間更少。這種制造技術(shù)可以應(yīng)用更大的表面、復(fù)雜的幾何形狀和保形冷卻通道。
增材制造(又稱3D打?。┦且詳?shù)字模型為基礎(chǔ),將材料逐層堆積制造出實體物品的新興制造技術(shù),將對傳統(tǒng)的工藝流程、生產(chǎn)線、工廠模式、產(chǎn)業(yè)鏈組合產(chǎn)生深刻影響,是制造業(yè)有代表性的顛覆性技術(shù)。
三維(3D)纖維支架因為其纖維網(wǎng)絡(luò)可以有效地模擬ECM結(jié)構(gòu),調(diào)節(jié)細胞生物學(xué)行為,包括粘附、分化和基質(zhì)沉積備受關(guān)注。靜電紡絲作為一種用途最廣泛的纖維制造技術(shù),可用于制備可控制的納米纖維,準確模擬ECM結(jié)構(gòu)(如纖維膠原)。然而,電紡纖維通常形成具有小孔徑和低厚度的二維(2D)膜,而很難構(gòu)建三維支架。3D打印是一種很有前途的技術(shù),可以精確控制單個三維形狀和大孔(鏈間)的支架。
現(xiàn)階段,3D打印技術(shù)并不是完全以單一技術(shù)應(yīng)用的方式服務(wù)于金屬零部件制造領(lǐng)域,按照其在金屬零部件成形過程中的作用來分類,服務(wù)方式可大致劃分為間接制造、直接制造和組合制造方式。多模式的應(yīng)用方式有效兼顧了金屬零部件產(chǎn)品的制造成本和使用價值,并擴大了3D打印技術(shù)在工業(yè)領(lǐng)域的應(yīng)用空間。
金屬醫(yī)用材料是人類最早利用的醫(yī)用材料之一,其應(yīng)用可以追溯到公元前400~300年,腓尼基人將金屬絲用于修復(fù)牙缺失。隨后,經(jīng)歷了漫長歲月的發(fā)展,直至19世紀后期,人類成功利用貴金屬銀對患者的膝蓋骨進行縫合(1880年)。人類利用鍍鎳鋼螺釘進行骨折治療(1896年)后,才開始了對金屬醫(yī)用材料的系統(tǒng)研究。20世紀30年代,隨著鈷鉻合金、不銹鋼和鈦及合金的相繼開發(fā)成功并在齒科和骨科中得到廣泛的應(yīng)用,逐步奠定了金屬醫(yī)用材料在生物醫(yī)用材料中的重要地位。70年代,Ni-Ti形狀記憶合金在臨床醫(yī)學(xué)中的成功應(yīng)用以及金屬表面生物醫(yī)用涂層材料的發(fā)展,使生物醫(yī)用金屬材料得到了極大的發(fā)展。